Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems
نویسندگان
چکیده
With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.
منابع مشابه
A Mobile Robot Testbed for Prognostics-Enabled Autonomous Decision Making
The ability to utilize prognostic system health information in operational decision making, especially when fused with information about future operational, environmental, and mission requirements, is becoming desirable for both manned and unmanned aerospace vehicles. A vehicle capable of evaluating its own health state and making (or assisting the crew in making) decisions with respect to its ...
متن کاملStream-Based Middleware Support for Embedded Reasoning
For autonomous systems such as unmanned aerial vehicles to successfully perform complex missions, a great deal of embedded reasoning is required at varying levels of abstraction. In order to make use of diverse reasoning modules in such systems, issues of integration such as sensor data flow and information flow between such modules has to be taken into account. The DyKnow framework is a tool w...
متن کاملProvability-Based Semantic Interoperability for Information Sharing and Joint Reasoning
We describe provability-based semantic interoperability (PBSI), a framework transcending syntactic translation that enables robust, meaningful, knowledge exchange across diverse information systems. PBSI is achieved through translation graphs that capture complex ontological relationships, and through provability-based queries. We work through an example of automating an unmanned aerial vehicle...
متن کاملStream-Based Reasoning Support for Autonomous Systems
For autonomous systems such as unmanned aerial vehicles to successfully perform complex missions, a great deal of embedded reasoning is required at varying levels of abstraction. To support the integration and use of diverse reasoning modules we have developed DyKnow, a stream-based knowledge processing middleware framework. By using streams, DyKnow captures the incremental nature of sensor dat...
متن کاملGenerating a diagnostic system from an automated FMEA
This paper builds on the ability to produce a comprehensive automated Failure Modes and Effects Analysis using qualitative model based reasoning techniques. From the FMEA output a diagnostic system comprised of a set of symptoms and associated potential faults can be generated and used as the basis of an on-board or off-board diagnostic system. This makes it is easy to propose additional sensin...
متن کامل